posted on 2023-05-21 17:27 read(572) comment(0) like(20) collect(3)
Main steps:
(1) models/common.py
Register the attention module in
(2) Add the attention module to the function in models/yolo.py
( 3) Modify the configuration file (4) Run for verification The addition method of each attention mechanism module is similar, each attention module The modification refers to SE. This article adds attention to the complete code: https://github.com/double-vin/yolov5_attentionparse_model
yolov5s.yaml
yolo.py
Squeeze-and-Excitation Networks
https://github.com/hujie-frank/SENet
models/common.py
Register the SE module inclass SE(nn.Module): def __init__(self, c1, c2, ratio=16): super(SE, self).__init__() #c*1*1 self.avgpool = nn.AdaptiveAvgPool2d(1) self.l1 = nn.Linear(c1, c1 // ratio, bias=False) self.relu = nn.ReLU(inplace=True) self.l2 = nn.Linear(c1 // ratio, c1, bias=False) self.sig = nn.Sigmoid() def forward(self, x): b, c, _, _ = x.size() y = self.avgpool(x).view(b, c) y = self.l1(y) y = self.relu(y) y = self.l2(y) y = self.sig(y) y = y.view(b, c, 1, 1) return x * y.expand_as(x)
models/yolo.py
function inparse_model
yolov5s.yaml
. C3SE
两个Concat
Detect
yolo.py
models/common.py
:class SEBottleneck(nn.Module): # Standard bottleneck def __init__(self, c1, c2, shortcut=True, g=1, e=0.5, ratio=16): # ch_in, ch_out, shortcut, groups, expansion super().__init__() c_ = int(c2 * e) # hidden channels self.cv1 = Conv(c1, c_, 1, 1) self.cv2 = Conv(c_, c2, 3, 1, g=g) self.add = shortcut and c1 == c2 # self.se=SE(c1,c2,ratio) self.avgpool = nn.AdaptiveAvgPool2d(1) self.l1 = nn.Linear(c1, c1 // ratio, bias=False) self.relu = nn.ReLU(inplace=True) self.l2 = nn.Linear(c1 // ratio, c1, bias=False) self.sig = nn.Sigmoid() def forward(self, x): x1 = self.cv2(self.cv1(x)) b, c, _, _ = x.size() y = self.avgpool(x1).view(b, c) y = self.l1(y) y = self.relu(y) y = self.l2(y) y = self.sig(y) y = y.view(b, c, 1, 1) out = x1 * y.expand_as(x1) # out=self.se(x1)*x1 return x + out if self.add else out class C3SE(C3): # C3 module with SEBottleneck() def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5): super().__init__(c1, c2, n, shortcut, g, e) c_ = int(c2 * e) # hidden channels self.m = nn.Sequential(*(SEBottleneck(c_, c_, shortcut) for _ in range(n)))
models/yolo.py
function inparse_model
yolov5s.yaml
.yolo.py
《CBAM: Convolutional Block Attention Module》
class ChannelAttention(nn.Module): def __init__(self, in_planes, ratio=16): super(ChannelAttention, self).__init__() self.avg_pool = nn.AdaptiveAvgPool2d(1) self.max_pool = nn.AdaptiveMaxPool2d(1) self.f1 = nn.Conv2d(in_planes, in_planes // ratio, 1, bias=False) self.relu = nn.ReLU() self.f2 = nn.Conv2d(in_planes // ratio, in_planes, 1, bias=False) self.sigmoid = nn.Sigmoid() def forward(self, x): avg_out = self.f2(self.relu(self.f1(self.avg_pool(x)))) max_out = self.f2(self.relu(self.f1(self.max_pool(x)))) out = self.sigmoid(avg_out + max_out) return out class SpatialAttention(nn.Module): def __init__(self, kernel_size=7): super(SpatialAttention, self).__init__() assert kernel_size in (3, 7), 'kernel size must be 3 or 7' padding = 3 if kernel_size == 7 else 1 # (特征图的大小-算子的size+2*padding)/步长+1 self.conv = nn.Conv2d(2, 1, kernel_size, padding=padding, bias=False) self.sigmoid = nn.Sigmoid() def forward(self, x): # 1*h*w avg_out = torch.mean(x, dim=1, keepdim=True) max_out, _ = torch.max(x, dim=1, keepdim=True) x = torch.cat([avg_out, max_out], dim=1) #2*h*w x = self.conv(x) #1*h*w return self.sigmoid(x) class CBAM(nn.Module): # CSP Bottleneck with 3 convolutions def __init__(self, c1, c2, ratio=16, kernel_size=7): # ch_in, ch_out, number, shortcut, groups, expansion super(CBAM, self).__init__() self.channel_attention = ChannelAttention(c1, ratio) self.spatial_attention = SpatialAttention(kernel_size) def forward(self, x): out = self.channel_attention(x) * x # c*h*w # c*h*w * 1*h*w out = self.spatial_attention(out) * out return out
class CBAMBottleneck(nn.Module): # Standard bottleneck def __init__(self, c1, c2, shortcut=True, g=1, e=0.5,ratio=16,kernel_size=7): # ch_in, ch_out, shortcut, groups, expansion super(CBAMBottleneck,self).__init__() c_ = int(c2 * e) # hidden channels self.cv1 = Conv(c1, c_, 1, 1) self.cv2 = Conv(c_, c2, 3, 1, g=g) self.add = shortcut and c1 == c2 self.channel_attention = ChannelAttention(c2, ratio) self.spatial_attention = SpatialAttention(kernel_size) #self.cbam=CBAM(c1,c2,ratio,kernel_size) def forward(self, x): x1 = self.cv2(self.cv1(x)) out = self.channel_attention(x1) * x1 # print('outchannels:{}'.format(out.shape)) out = self.spatial_attention(out) * out return x + out if self.add else out class C3CBAM(C3): # C3 module with CBAMBottleneck() def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5): super().__init__(c1, c2, n, shortcut, g, e) c_ = int(c2 * e) # hidden channels self.m = nn.Sequential(*(CBAMBottleneck(c_, c_, shortcut) for _ in range(n)))
《ECA-Net: Efficient Channel Attention for Deep Convolutional Neural Networks》
https://github.com/BangguWu/ECANet
class ECA(nn.Module): """Constructs a ECA module. Args: channel: Number of channels of the input feature map k_size: Adaptive selection of kernel size """ def __init__(self, c1, c2, k_size=3): super(ECA, self).__init__() self.avg_pool = nn.AdaptiveAvgPool2d(1) self.conv = nn.Conv1d(1, 1, kernel_size=k_size, padding=(k_size - 1) // 2, bias=False) self.sigmoid = nn.Sigmoid() def forward(self, x): # feature descriptor on the global spatial information y = self.avg_pool(x) # print(y.shape,y.squeeze(-1).shape,y.squeeze(-1).transpose(-1, -2).shape) # Two different branches of ECA module # 50*C*1*1 # 50*C*1 # 50*1*C y = self.conv(y.squeeze(-1).transpose(-1, -2)).transpose(-1, -2).unsqueeze(-1) # Multi-scale information fusion y = self.sigmoid(y) return x * y.expand_as(x)
class ECABottleneck(nn.Module): # Standard bottleneck def __init__(self, c1, c2, shortcut=True, g=1, e=0.5, ratio=16, k_size=3): # ch_in, ch_out, shortcut, groups, expansion super().__init__() c_ = int(c2 * e) # hidden channels self.cv1 = Conv(c1, c_, 1, 1) self.cv2 = Conv(c_, c2, 3, 1, g=g) self.add = shortcut and c1 == c2 # self.eca=ECA(c1,c2) self.avg_pool = nn.AdaptiveAvgPool2d(1) self.conv = nn.Conv1d(1, 1, kernel_size=k_size, padding=(k_size - 1) // 2, bias=False) self.sigmoid = nn.Sigmoid() def forward(self, x): x1 = self.cv2(self.cv1(x)) # out=self.eca(x1)*x1 y = self.avg_pool(x1) y = self.conv(y.squeeze(-1).transpose(-1, -2)).transpose(-1, -2).unsqueeze(-1) y = self.sigmoid(y) out = x1 * y.expand_as(x1) return x + out if self.add else out class C3ECA(C3): # C3 module with ECABottleneck() def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5): super().__init__(c1, c2, n, shortcut, g, e) c_ = int(c2 * e) # hidden channels self.m = nn.Sequential(*(ECABottleneck(c_, c_, shortcut) for _ in range(n)))
Coordinate Attention for Efficient Mobile Network Design
https://github.com/Andrew-Qibin/CoordAttention
class h_sigmoid(nn.Module): def __init__(self, inplace=True): super(h_sigmoid, self).__init__() self.relu = nn.ReLU6(inplace=inplace) def forward(self, x): return self.relu(x + 3) / 6 class h_swish(nn.Module): def __init__(self, inplace=True): super(h_swish, self).__init__() self.sigmoid = h_sigmoid(inplace=inplace) def forward(self, x): return x * self.sigmoid(x) class CoordAtt(nn.Module): def __init__(self, inp, oup, reduction=32): super(CoordAtt, self).__init__() self.pool_h = nn.AdaptiveAvgPool2d((None, 1)) self.pool_w = nn.AdaptiveAvgPool2d((1, None)) mip = max(8, inp // reduction) self.conv1 = nn.Conv2d(inp, mip, kernel_size=1, stride=1, padding=0) self.bn1 = nn.BatchNorm2d(mip) self.act = h_swish() self.conv_h = nn.Conv2d(mip, oup, kernel_size=1, stride=1, padding=0) self.conv_w = nn.Conv2d(mip, oup, kernel_size=1, stride=1, padding=0) def forward(self, x): identity = x n, c, h, w = x.size() # c*1*W x_h = self.pool_h(x) # c*H*1 # C*1*h x_w = self.pool_w(x).permute(0, 1, 3, 2) y = torch.cat([x_h, x_w], dim=2) # C*1*(h+w) y = self.conv1(y) y = self.bn1(y) y = self.act(y) x_h, x_w = torch.split(y, [h, w], dim=2) x_w = x_w.permute(0, 1, 3, 2) a_h = self.conv_h(x_h).sigmoid() a_w = self.conv_w(x_w).sigmoid() out = identity * a_w * a_h return out
class CABottleneck(nn.Module): # Standard bottleneck def __init__(self, c1, c2, shortcut=True, g=1, e=0.5, ratio=32): # ch_in, ch_out, shortcut, groups, expansion super().__init__() c_ = int(c2 * e) # hidden channels self.cv1 = Conv(c1, c_, 1, 1) self.cv2 = Conv(c_, c2, 3, 1, g=g) self.add = shortcut and c1 == c2 # self.ca=CoordAtt(c1,c2,ratio) self.pool_h = nn.AdaptiveAvgPool2d((None, 1)) self.pool_w = nn.AdaptiveAvgPool2d((1, None)) mip = max(8, c1 // ratio) self.conv1 = nn.Conv2d(c1, mip, kernel_size=1, stride=1, padding=0) self.bn1 = nn.BatchNorm2d(mip) self.act = h_swish() self.conv_h = nn.Conv2d(mip, c2, kernel_size=1, stride=1, padding=0) self.conv_w = nn.Conv2d(mip, c2, kernel_size=1, stride=1, padding=0) def forward(self, x): x1=self.cv2(self.cv1(x)) n, c, h, w = x.size() # c*1*W x_h = self.pool_h(x1) # c*H*1 # C*1*h x_w = self.pool_w(x1).permute(0, 1, 3, 2) y = torch.cat([x_h, x_w], dim=2) # C*1*(h+w) y = self.conv1(y) y = self.bn1(y) y = self.act(y) x_h, x_w = torch.split(y, [h, w], dim=2) x_w = x_w.permute(0, 1, 3, 2) a_h = self.conv_h(x_h).sigmoid() a_w = self.conv_w(x_w).sigmoid() out = x1 * a_w * a_h # out=self.ca(x1)*x1 return x + out if self.add else out class C3CA(C3): # C3 module with CABottleneck() def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5): super().__init__(c1, c2, n, shortcut, g, e) c_ = int(c2 * e) # hidden channels self.m = nn.Sequential(*(CABottleneck(c_, c_,shortcut) for _ in range(n)))
Tips: The position of adding attention is not limited, you can try various permutations and combinations
Reference:
Introduction to multiple attentions
Adding attention video explaining
adding CBAM
Author:kimi
link:http://www.pythonblackhole.com/blog/article/25357/741f0c4b72b6d2308e0d/
source:python black hole net
Please indicate the source for any form of reprinting. If any infringement is discovered, it will be held legally responsible.
name:
Comment content: (supports up to 255 characters)
Copyright © 2018-2021 python black hole network All Rights Reserved All rights reserved, and all rights reserved.京ICP备18063182号-7
For complaints and reports, and advertising cooperation, please contact vgs_info@163.com or QQ3083709327
Disclaimer: All articles on the website are uploaded by users and are only for readers' learning and communication use, and commercial use is prohibited. If the article involves pornography, reactionary, infringement and other illegal information, please report it to us and we will delete it immediately after verification!